Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Environ Res Public Health ; 19(24)2022 12 19.
Article in English | MEDLINE | ID: covidwho-2163412

ABSTRACT

Objective: We investigated the effects of maitland thoracic joint mobilization and lumbar stabilization exercise on diaphragm thickness and respiratory function in patients with a history of COVID-19. Methods: Thirty patients who had passed one month after COVID-19 onset were randomly divided into maitland thoracic mobilization and lumbar stabilization and combined breathing exercise groups; each group performed thoracic mobilization and lumbar stabilization exercises and combined breathing exercise and ergometer exercises, respectively, for 50 min, three times a week, for eight weeks. We used the MYSONO U5 MicroQuark to evaluate diaphragm thickness and respiratory function (forced vital capacity, forced expiratory volume in the one second, peak expiratory flow), respectively. Results: There were no significant between-group differences in general patient characteristics and change in diaphragm thickness and respiratory function. Both groups showed significant improvement within each parameter. However, the maitland thoracic mobilization and lumbar stabilization group showed more significant improvements than did the combined breathing exercise group (p < 0.05). Conclusion: In this study, we confirmed the maitland thoracic joint mobilization and lumbar stabilization exercise on the diaphragm thickness and respiratory function in patients with a history of COVID-19.


Subject(s)
COVID-19 , Diaphragm , Humans , Respiration , Exercise Therapy , Breathing Exercises
2.
Signal Transduct Target Ther ; 7(1): 367, 2022 10 17.
Article in English | MEDLINE | ID: covidwho-2077027

ABSTRACT

The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.


Subject(s)
COVID-19 Drug Treatment , Lipolysis , Orthomyxoviridae Infections , Animals , Humans , Mice , Antiviral Agents/pharmacology , Cytokines , Fatty Acids, Nonesterified , Influenza A virus , Lipase , Membrane Transport Proteins , RNA , SARS-CoV-2 , Orthomyxoviridae Infections/drug therapy
3.
J Korean Med Sci ; 37(34): e260, 2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2022638

ABSTRACT

BACKGROUND: Due to the higher transmissibility and increased immune escape of the omicron variant of severe acute respiratory syndrome coronavirus 2, the number of patients with coronavirus disease 2019 (COVID-19) has skyrocketed in the Republic of Korea. Here, we analyzed the change in trend of the number of confirmed COVID-19 cases in the Korean military after the emergence of the omicron variant on December 5, 2021. METHODS: An interrupted time-series analysis was performed of the daily number of newly confirmed COVID-19 cases in the Korean military from September 1, 2021 to April 10, 2022, before and after the emergence of the omicron variant. Moreover, the daily number of newly confirmed COVID-19 cases in the Korean military and in the population of Korean civilians adjusted to the same with military were compared. RESULTS: The trends of COVID-19 occurrence in the military after emergence of the omicron variant was significantly increased (regression coefficient, 23.071; 95% confidence interval, 16.122-30.020; P < 0.001). The COVID-19 incidence rate in the Korean military was lower than that in the civilians, but after the emergence of the omicron variant, the increased incidence rate in the military followed that of the civilian population. CONCLUSION: The outbreak of the omicron variant occurred in the Korean military despite maintaining high vaccination coverage and intensive non-pharmacological interventions.


Subject(s)
COVID-19 , Military Personnel , COVID-19/epidemiology , Humans , Republic of Korea/epidemiology , SARS-CoV-2
4.
PLoS One ; 17(3): e0264711, 2022.
Article in English | MEDLINE | ID: covidwho-1793510

ABSTRACT

Reports detailing the clinical characteristics, viral load, and outcomes of patients with normal initial chest CT findings are lacking. We sought to compare the differences in clinical findings, viral loads, and outcomes between patients with confirmed COVID-19 who initially tested negative on chest CT (CT negative) with patients who tested initially positive on chest CT (CT positive). The clinical data, viral loads, and outcomes of initial CT-positive and CT-negative patients examined between January 2020 and April 2020 were retrospectively compared. The efficacy of viral load (cyclic threshold value [Ct value]) in predicting pneumonia was evaluated using receiver operating characteristic (ROC) curve and area under the curve (AUC). In total, 128 patients underwent initial chest CT (mean age, 54.3 ± 19.0 years, 50% male). Of those, 36 were initially CT negative, and 92 were CT positive. The CT-positive patients were significantly older (P < .001) than the CT-negative patients. Only age was significantly associated with the initial presence of pneumonia (odds ratio, 1.060; confidence interval (CI), 1.020-1-102; P = .003). In addition, age (OR, 1.062; CI, 1.014-1.112; P = .011), fever at diagnosis (OR, 6.689; CI, 1.715-26.096; P = .006), and CRP level (OR, 1.393; CI, 1.150-1.687; P = .001) were significantly associated with the need for O2 therapy. Viral load was significantly higher in the CT-positive group than in the CT-negative group (P = .017). The cutoff Ct value for predicting the presence of pneumonia was 27.71. Outcomes including the mean hospital stay, intensive care unit admission, and O2 therapy were significantly worse in the CT-positive group than in the CT-negative group (all P < .05). In conclusion, initially CT-negative patients showed better outcomes than initially CT-positive patients. Age was significantly associated with the initial presence of pneumonia, and viral load may help in predicting the initial presence of pneumonia.


Subject(s)
COVID-19/diagnosis , Thorax/diagnostic imaging , Viral Load , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Republic of Korea/epidemiology , Retrospective Studies , SARS-CoV-2 , Sputum/virology , Tomography, X-Ray Computed , Viral Load/physiology , Young Adult
5.
J Korean Med Sci ; 37(3): e23, 2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1637689

ABSTRACT

BACKGROUND: The military was one of the first groups in Korea to complete mass vaccination against the coronavirus disease 2019 (COVID-19) due to their high vulnerability to COVID-19. To confirm the effect of mass vaccination, this study analyzed the patterns of confirmed cases within Korean military units. METHODS: From August 1 to September 15, 2021, all epidemiological data regarding confirmed COVID-19 cases in military units were reviewed. The number of confirmed cases in the units that were believed to have achieved herd immunity (i.e., ≥ 70% vaccination) was compared with the number of cases in the units that were not believed to have reached herd immunity (< 70% vaccination). Additionally, trends in the incidence rates of COVID-19 in the military and the entire Korean population were compared. RESULTS: By August 2021, 85.60% of military personnel were fully vaccinated. During the study period, a total of 174 COVID-19 cases were confirmed in the 39 units. More local transmission (herd immunity group vs. non-herd immunity group [%], 1 [0.91] vs. 39 [60.94]) and hospitalizations (12 [11.01] vs. 13 [27.08]) occurred in the units that were not believed to have achieved herd immunity. The percentage of fully vaccinated individuals among the confirmed COVID-19 cases increased over time, possibly due to the prevalence of the delta variant. Nevertheless, the incidence rate remained lower in military units than in the general Korean population. CONCLUSION: After completing mass vaccination, the incidence rates of COVID-19 infection in the military were lower than those in the national population. New cluster infections did not occur in vaccinated units, thereby suggesting that herd immunity has been achieved in these military units. Further research is needed to determine the extent to which levels of non-pharmacological intervention can be reduced in the future.


Subject(s)
COVID-19/epidemiology , Mass Vaccination/statistics & numerical data , Military Personnel/statistics & numerical data , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization/statistics & numerical data , Humans , Immunity, Herd/immunology , Incidence , Republic of Korea/epidemiology , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL